Bridge to PhD Sample written assessment

The instructions for the assessment are as follows.

- You have up to 4.5 hours to complete any 8 of the following 12 problems.
- You may use any textbook references for assistance.
- You may not use the internet or receive help from anyone else.
- You will submit your responses by email when you are finished (preferably with a single pdf file).

Name

1. Show there is an $x \in[0,1]$ for which

$$
\cos (x)=x
$$

2. Compute the limit

$$
\lim _{n \rightarrow \infty} n\left(2^{1 / n}-1\right) .
$$

3. Does the integral

$$
\int_{0}^{\infty} e^{-x} \sin (x) d x
$$

converge? If so, how would you evaluate it?
4. Find all x, y, z which solve the equations

$$
\left\{\begin{array}{l}
2 x+y-z=8 \\
-3 x-y+2 z=-11 \\
-2 x+y+2 z=-3
\end{array}\right.
$$

5. Find the formula for the linear transformation of \mathbb{R}^{2} which is reflection across the line $y=\frac{1}{2} x$.
6. The space V of cubic polynomials on $[-1,1]$ with real coefficients has a natural basis $\left\{1, x, x^{2}, x^{3}\right\}$ and inner product

$$
\langle p, q\rangle=\int_{-1}^{1} p(x) q(x) d x \quad(p, q \in V)
$$

Find an orthogonal basis $\left\{p_{0}, p_{2}, p_{3}, p_{3}\right\}$ for V, where "orthogonal" is determined by the above inner product.
7. Suppose $\left(x_{k}\right)_{k \in \mathbb{N}}$ is a sequence of real numbers and for each $\epsilon>0$ there is $N \in \mathbb{N}$ such that

$$
\sum_{k=n+1}^{m}\left|x_{k}\right|<\epsilon
$$

for $N \leq n<m$. Show that the infinite sum

$$
\sum_{k=1}^{\infty} x_{k}
$$

converges.
8. Verify

$$
\ln (1+x) \geq x-\frac{1}{2} x^{2}
$$

for $x \geq 0$.
9. Suppose $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a smooth function of the (x, y) variables which satisfies

$$
\frac{\partial^{2} g}{\partial x^{2}}+\frac{\partial^{2} g}{\partial y^{2}}<0
$$

Show that g cannot have a local minimum at any $(x, y) \in \mathbb{R}^{2}$.
10. Suppose

$$
\sigma=\left(\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
8 & 4 & 3 & 2 & 7 & 6 & 1 & 5
\end{array}\right)
$$

is a permutation of $\{1, \ldots, 8\}$. That is, $\sigma(1)=8, \sigma(2)=4$ and so on.
(i) Write σ as a product of transpositions.
(ii) What is the order of σ ?
11. Suppose $a, b \in \mathbb{N}$ satisfy

$$
a x+b y=1
$$

for some $x, y \in \mathbb{Z}$. What conclusions can we make on a, b ?
12. Suppose R is a integral domain and that there is a smallest positive integer n such

$$
\underbrace{1+\cdots+1}_{n \text { times }}=0 .
$$

Here 0 and 1 are the respective additive and multiplicative identities of R. Show that n is prime.

